ABSTRACT: This paper presents application of segmentation techniques on atherosclerosis images using various segmentation methods like Otsu thresholding, fuzzy C means, clustering algorithm and marker controlled watershed segmentation algorithm. Atherosclerosis is one of the causes of coronary heart disease (CHD). The proposed marker controlled watershed algorithm for medical image segmentation and analysis is very important because of its advantages, such as always being able to construct an entire division of the color image and prevent over segmentation as compared to conventional watershed algorithm. Paper finds Region of Interest (ROI) values of segmented image with proposed technique for coronary atherosclerosis.
Keywords - Coronary heart disease (CHD), Clustering Image Segmentation Technique, Medical Image Segmentation, Fuzzy C means algorithm, Marker based Watershed Image Segmentation Technique.
[1] Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing, Analysis and Machine Vision, 2nd ed., Bangalore , by Thomson Asia Pte Ltd., Singapore, first reprint 2001, pp-186.
[2] Anil k. Jain, Fundamentals of Digital Image Processing, Delhi, Published by Pearson Education, 3rd Impression, 2008, pp-370.
[3] J. L. Vincent, "Morphological grayscale reconstruction in image analysis: Application and efficient algorithms," IEEE Trans. Image Proc., vol. 2, pp. 176-201, 1993.
[4] S. Beucher, "Watershed, hierarchical segmentation and waterfall algorithm," Mathematical Morphology and Its Applications to Image Processing, Dordrecht, and The Netherlands: Kluwer pp. 69-76, 1994.
[5] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis and S. K. Warfield, "Improved Watershed Transform for Medical Image Segmentation Using Prior Information," IEEE Trans. Medical imaging, vol. 23, No. 4, pp. 447-458, April 2004.
[6] Valerie Pazos, Rosaire Mongrain, and Jean-Claude Tardif, "Mechanical Characterization of Atherosclerotic Arteries Using Finite-Element Modeling: Feasibility Study on Mock Arteries," IEEE Trans. on biomedical Eng., vol. 57, no. 6, June 2010.
[7] Christof Karmonik, Pamela Basto, Kasey Vickers, Kirt Martin, Micheal J. Reardon, Gerald M. Lawrie, and Joel D. Morrisett, "Quantitative Segmentation of Principal Carotid Atherosclerotic Lesion Components by Feature Space Analysis Based on Multicontrast MRI at 1.5 T," IEEE Transactions on biomedical engineering, vol. 56, no. 2, February 2009.
[8] Danijela Vukadinovic, Theo van Walsum, Rashindra Manniesing, Sietske Rozie, Reinhard Hameeteman, Thomas T. de Weert, Aad van der Lugt, and Wiro J. Niessen, "Segmentation of the Outer Vessel Wall of the Common Carotid Artery in CTA," IEEE Transactions on medical imaging, vol. 29, no. 1, January 2010
[9] Gozde Unal, Susann Bucher, Stephane Carlier, Greg Slabaugh, Tong Fang, and Kaoru Tanaka, "Shape-Driven Segmentation of the Arterial Wall in Intravascular Ultrasound Images," IEEE Trans. on info. Tech. in biomedicine, vol. 12, no. 3, May 2008
[10] Simon Le Floch, Jacques Ohayon, Philippe Tracqui, Gerard Finet, Ahmed M. Gharib, Roch L. Maurice, Guy Cloutier, and Roderic I. Pettigrew, "Vulnerable Atherosclerotic Plaque Elasticity Reconstruction Based on a Segmentation-Driven Optimization Procedure Using Strain Measurements: Theoretical Framework," IEEE Trans. on medical imaging, vol. 28, no. 7, July 2009.