ABSTRACT: We generalize the notion of mutually unbiased bases from bipartite system to multipartite system. First, we study mutually unbiased bases in tripartite systems. A general method of constructing a pair of mutually unbiased bases in tripartite systems is presented, and two pair different mutually unbiased bases in 3 3 4 C C C is given. Furthermore, we study mutually unbiased bases in multipartite systems, and we present the two pairs of mutually unbiased bases in 3 3 4 2 C C C C .
Keywords – Mutually unbiased bases, tripartite systems, multipartite systems
[1]. Bermett, C. H., Brassard, G., Crépean, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13):1895.
[2]. Bermett, C. H., Wiesners, S. J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states.[J]. Physical Review Letters, 1992, 69(20):2881-2884.
[3]. Curty, M. Lewenstein, M. Tkenhaus, N. L.: Entanglement as a precondition for secure quantum key distribution.[J].
Physical Review Letters, 2004, 92(21):217903.
[4]. Zheng S B. Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities[J]. Physical Review A, 2002, 66(1):90-95.
[5]. Bennett, C. H., DiVincenzo, D. P., Mor, T.: Quantum nonlocality without entanglement[J]. Physical Review A, 1998,
59(2):1070-1091.