Abstract: In this paper, we obtained two fractional integrals involving the product of two I-functions [10],
general class of polynomials and Gauss hypergeometric function. By making use of these integrals, we have
obtained two theorems based on modified Saigo operators of fractional integration.
Keywords: fractional integral, Saigo operators, Riemann-Liouville operator, Weyl operator, Erd𝑒 lyi- Kober
operator, I-function, gauss hypergeometric function and general class of multivariable polynomial.
[1]. Agrawal, R., Pareek,R.S. and Saigo,M. A general fractional integral formula, J.Frac. Calc., 7, (1995), 55-60.
[2]. Chatterjea, S.K. Queiques function generatrices des polynomes d'Hermite, du point de vue de I'algibre de Lie, C.R. Acad. Sci. Paris
Ser., A-B 268, (1996), A600-A602.
[3]. Fox, C. The G and H-function as symmetrical Fourier kernel, Trans. Amer. Math. Soc., 98 (1961), 395-429
[4]. Dhillon, S.S. A study of generalization of special functions of mathematical physics and applications, Ph.D. Thesis, Bundelkhand
Univ., India (1989).
[5]. Gould, H.W. and Hopper, A.T. Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J.,
29 (1962), 51-63.
[6]. Inayat-Hussain,A.A. New properties of hypergeometric series derivable from Feynman integrals: II, A generalization of the Hfunction,
J. Phys. A. Math. Gen. 20 (1987), 4119-4128.