Abstract: In this paper we have discussed the differential geometry of rheonomic Lagrange space with Matsumoto metric.We find the coefficients of semispray, integral curve of semispray, Canonical nonlinear connection, differential equations of auto parallel curves and canonical metrical N-linear connection of rheonomic Lagrange space with Matsumoto metric.
Keywords: Rheonomic Lagrange space, Matsumoto metric, semispray, and autoparallel curves.
[1]. Antonelli, P. L., Ed.,:Handbook of Finsler Geometry, Kluwer Academic, Dordrecht, The Netherlands, 2003.
[2]. Anastasiei, M., Kawaguchi, H.,: A geometrical theory of time dependent Lagrangians: I, Nonlinear connections, Tensor (N. S.),48 (1989), 273-282, II, M connections, Tensor (N. S.), 48 (1989), 283-292, III, Applications, Tensor (N. S.),49 (1990),296-304.
[3]. Frigioiu, C.:Lagrangian geometrization in mechanics, Tensor (N. S.),65, No. 3 (2004), 225-233
[4]. Ingarden, R. S. and Lawrynowicz, J.,:" Randers antisymmetric metric in the space-time of general relativity 1. Outline of the method," Bullentin de la Société des Sciences et des Lettres de Łódź Série: Recherches sur les Déformations, vol. 59, no. 1, pp. 117-130, 2009
[5]. Kitayama, M., Azuma, M. and Matsumoto, M., : " On Finsler space with - metricregularity, geodesics and main scalars," Journals of Hokkaido University of Education, vol. 46, no. 1, pp. 1- 10, 1995.