Abstract: This paper proposed novel multilevel inverter with low number of switches. Multilevel inverters are applicable for high power purpose in industries which become very popular. When compared to two level inverters these multilevel inverters produces good quality of output wave from. In such a way that, at first new proposed topology which as sub multilevel inverter is designed after that cascaded connection of sub multi level inverters called as novel cascaded multilevel inverter is proposed. This proposed novel cascaded multilevel inverter uses less number of switching devices.
[1]. J. Rodriguez, J. S. Lai, and F. Z. Peng, "Multilevel inverters: A survey of topologies, controls, and applications," IEEE Trans. Ind. Electron.,vol. 49, no. 4, pp. 724–738, Aug. 2002.
[2]. J. H. Kim, S. K. Sul, and P. N. Enjeti, "A carrier-based PWM method with optimal switching sequence for a multilevel four-leg voltage-source inverter," IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1239–1248, Jul./Aug.2008.
[3]. O. Lopez, J. Alvarez, J. Doval-Gandoy, F. D. Freijedo, A. Nogueiras, A. Lago, and C. M. Penalver, "Comparison of the FPGA implementation of two multilevel space vector PWM algorithms," IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1537–1547, Apr. 2008.
[4]. Boora, A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, "Voltagesharing converter to supply single-phase asymmetrical four-level diode clamped inverter with high power factor loads," IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2507–2520, Oct. 2010.
[5]. J. Rodriguez, S. Bernet, P. Steimer, and I. Lizama, "A survey on neutral point clamped inverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2219–2230, Jul. 2010.